

STAD-R

Einregulierventile

DN 15-25 mit reduziertem Kv Wert

STAD-R

Das STAD-R Einregulierungsventil ist speziell für die Renovation konzipiert und liefert exzellente Leistungen in einer Reihe von Anwendungen. Es ist ideal für Heizungs-, Kälte- und Trinkwassersystemen geeignet.

Hauptmerkmale

> Handrad

Direkt digital ablesbare Handradposition zur genauen, schnellen und einfachen Einregulierung. Absperrfunktion zur einfacheren Wartung.

> Selbstdichtende Messnippel

Für schnelles und einfaches Messen.

> AMETAL®

Diese gegen Entzinkung resistente Legierung bietet eine verlängerte Lebensdauer des Ventils und verringert das Risiko von Leckagen.

Technische Beschreibung

Anwendungsbereich:

Heizungs- und Kälteanlagen Trinkwasseranlagen

Funktionen:

Einregulieren Voreinstellen Messen Absperren Entleeren

Dimensionen:

DN 15-25

Druckklasse:

PN 25

Temperatur:

Max. Betriebstemperatur: 120°C (Bei höheren Betriebstemperaturen, max. 150°C, bitte wenden Sie sich an das nächste Verkaufsbüro in Ihrer Nähe). Min. Betriebstemperatur: -20°C

Medien:

Wasser oder neutrale Flüssigkeiten, Wasser-Glykol-Gemische (0-57 %).

Werkstoffe:

Gehäuse und Oberteil: AMETAL® Dichtung (Gehäuse/Oberteil): O-Ring aus EPDM

Kegel: AMETAL®

Sitzdichtung: O-Ring aus EPDM

Spindel: AMETAL® Sicherungsscheibe: PTFE

Spindeldichtung: O-Ring aus EPDM

Feder: Rostfreier Stahl

Handrad: Polyamid- und TPE-Kunststoff

Messnippel: AMETAL® Dichtungen: EPDM

Verschlusskappen: Polyamid- und TPE-

Kunststoff

Entleeradapter: AMETAL®

Dichtung: EPDM

Dichtringe: Aramid Faserdichtungen

AMETAL® ist unsere gegen Entzinkung resistente Legierung.

Kennzeichnung:

Gehäuse: TA, PN 20/150, DN- und

Zollkennzeichnung.

Handrad: Ventiltyp und DN.

Messnippel

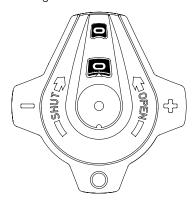
Die Messnippel sind selbstdichtend. Zur Messung werden die Schutzkappen geöffnet und die Messnadeln durch die selbstdichtenden Messanschlüsse eingesteckt.

Entleerung

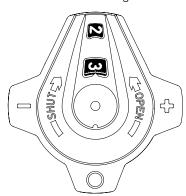
Ventil mit schwenkbarem Entleeradapter und Kappe für G3/4-Schlauchverschraubung.

Einstellung

Um einen Druckverlust entsprechend der Voreinstellung 2,3 des Diagrammes zu erreichen, muß die Einstellung des Ventils wie folgt vorgenommen werden:


- 1. Das Ventil ganz schließen (Bild 1).
- 2. Ventil bis zur gewünschten Einstellung 2,3 öffnen (Bild 2).
- **3.** Mit dem Innensechskantschlüssel (3 mm) ist die Innenspindel im Uhrzeigersinn bis zum Anschlag zu drehen.
- 4. Das Ventil ist jetzt voreingestellt.

Das Ventil kann jetzt geschlossen, jedoch nicht mehr über die gewählte Voreinstellung hinaus geöffnet werden.


Um die Voreinstellung eines Ventils zu kontrollieren: Das Ventil ganz öffnen. Die Anzeige am Handrad zeigt dann den Voreinstellwert, in diesem Fall die Ziffer 2,3 an (Bild 2). Für die Bestimmung einer richtigen Ventildimension und Voreinstellung (Druckverlust) gibt es Diagramme. Diese Diagramme zeigen den jeweiligen Druckverlust bei verschiedenen Einstellungen und Durchflüssen.

Das Öffnen über die Einstellung 4 hinaus ergibt keine Erhöhung der Durchflussmenge.

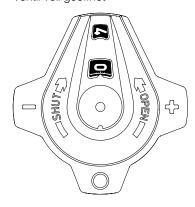
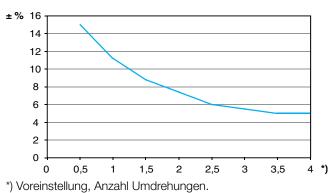

Bild 1 Ventil geschlossen

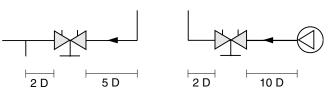
Bild 2Gewünschte Voreinstellung 2.3

Bild 3 Ventil voll geöffnet

Messgenauigkeit


Die Nullstellung des Handrades ist kalibriert und darf nicht geändert werden.

Durchflussabweichung bei verschiedenen Voreinstellungen


Die Kurve (Bild 1) gilt für gemäß (Bild 2) installierte Ventile. Alle Rohreinbauteile wie Armaturen oder Pumpen sollen mit unten angeführten Mindestabständen vor dem Ventil eingebaut werden.

Das Ventil kann mit umgekehrter Durchflussrichtung eingebaut werden. Die angegebenen Durchflussmengen gelten auch für diese Richtung, jedoch können die Abweichungen größer ausfallen (zusätzlich 5%).

Bild 1

Bild 2

Viskositätskorrektur

Die Berechnung der Durchflussmenge ist für Wasser mit +20°C gültig. Für andere Medien mit ungefähr gleicher Viskosität wie Wasser (≤20cSt=3°E=100S.U.) genügt eine Dichtekorrektur. Bei niedrigen Temperaturen erhöht sich jedoch die Viskosität des Mediums und es kann zu einer laminaren Strömung in den Ventilen kommen. Daraus entsteht eine Durchflussabweichung,

die speziell bei kleinen Ventilen, niedrigen Handradpositionen und geringen Differenzdrücken ansteigt. Eine Durchflusskorrektur kann mit der Software HySelect oder direkt mit unseren TA-SCOPE Einregulierungsgerät durchgeführt werden.

Kv-Werte

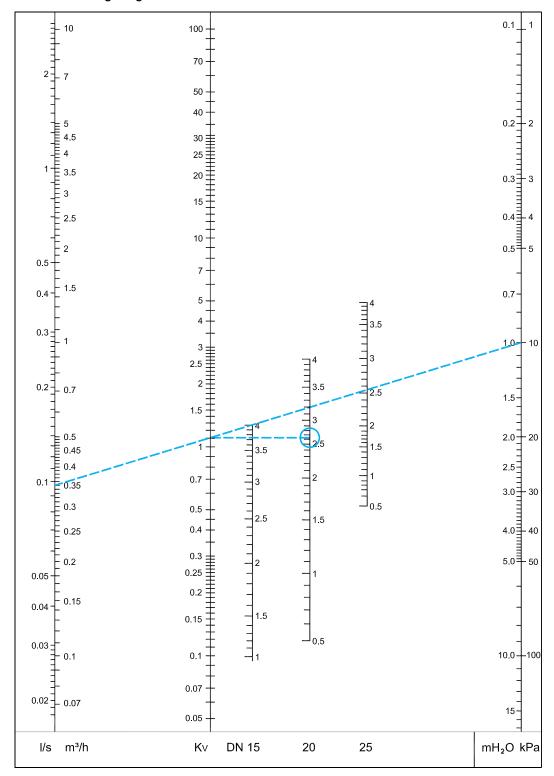
Anzahl Umdr.	DN 15	DN 20	DN 25	
0.5	-	0,118	0,521	
1	0,099	0,248	0,728	
1.5	0.155	0,447	1,00	
2	0,277	0,709	1.26	
2.5	0,452	1,03	1,81	
3	0,678	1,34	2,65	
3.5 0,962		1,93	3,85	
4	1,27	2,63	4,91	

Dimensionierung

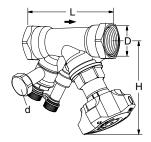
Wenn der erforderliche Druckverlust Δp und die gewünschte Durchflussmenge bekannt sind, kann der Kv-Wert mit nebenstehender Formel berechnet werden oder Sie verwenden das Diagramm.

$$\label{eq:Kv} \text{Kv} = 0.01 \frac{q}{\sqrt{\Delta p}} \qquad \text{q I/h, } \Delta p \text{ kPe}$$

$$\mathsf{Kv} = 36 \; \frac{\mathsf{q}}{\sqrt{\Delta \mathsf{p}}} \qquad \mathsf{q} \; \mathsf{l/s}, \Delta \mathsf{p} \; \mathsf{kPa}$$


Beispiel

Der Durchfluss beträgt 0,35 m³/h, ΔpV beträgt 10 kPa.


- Gehen Sie zum Dimensionierungsdiagramm. (Bei der Berechnung von Kv mithilfe der Formel gehen Sie direkt zu Schritt 4).
- 2. Ziehen Sie eine gerade Linie zwischen 0,35 m³/h und 10 kPa.
- 3. Lesen Sie den benötigten Kv-Wert dort ab, wo die Linie die Kv-Achse kreuzt. In diesem Fall lautet das Ergebnis: Kv= 1,1.
- 4. Ziehen Sie eine horizontale Linie von Kv 1,1; diese Linie kreuzt die Voreinstellwerte für die Ventile, die verwendet werden können. In diesem Fall sind es: DN 15 Einstellung 3,7, DN 20 Einstellung 2,6 und DN 25 Einstellung 1,7.
- Wählen Sie die kleinste Lösung (mit etwas Sicherheitsspielraum). In diesem Beispiel ist das DN 20 die beste Wahl.

Dimensionierungsdiagramm

Artikel

Mit Entleeradapter

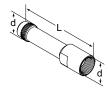
Innengewinde.

Gewinde nach ISO 228. Gewindelänge nach ISO 7/1.

DN	D	L	Н	Kvs	Kg	EAN	Artikel-Nr.
d = G3/	' 4						
15*	G1/2	84	100	1,27	0,56	5902276836428	52 873-615
20*	G3/4	94	100	2,63	0,64	5902276836435	52 873-620
25	G1	105	105	4,91	0,77	5902276836442	52 873-625

 $[\]rightarrow$ = vorgeschriebene Durchflussrichtung.

 $Kvs = m^3/h$ bei einem Druckverlust von 1 bar und voll geöffnetem Ventil.


Zubehör

Messnippel

Max. 120 °C (Kurzzeitig 150 °C) AMETAL®/EPDM

L	EAN	Artikel-Nr.
44	7318792813207	52 179-014
103	7318793858108	52 179-015

Verlängerung für Messnippel M14x1

Zur Verwendung bei größerer Dämmstoffstärke. AMETAL®

d	L	EAN	Artikel-Nr.
M14x1	71	7318793969507	52 179-016

Messnippelverlängerung 60 mm

(nicht für 52 179-000/-601) Kann ohne Systementleerung montiert werden.

AMETAL®/Rostfreier Stahl/EPDM

L	EAN	Artikel-Nr.
60	7318792812804	52 179-006

Handrad

Komplett

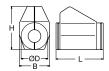
EAN	Artikel-Nr.	
7318794043503	52 186-007	

^{*)} Kann an glatte Rohre mit der Klemmringkupplung KOMBI angeschlossen werden.

EAN	Artikel-Nr.
7318792779206	52 161-990

Innensechskantschlüssel

[mm]		EAN	Artikel-Nr.
3	Voreinstellung	7318792836008	52 187-103
5	Entleerung	7318792836107	52 187-105



Kompressionskupplung KOMBI

Max. 100 °C (Weitere Informationen siehe Katalogblatt KOMBI).

Außengewinde der	Für Rohrdurch-	EAN	Artikel-Nr.
Druckschraube	messer		
G1/2	10	7318792874901	53 235-109
G1/2	12	7318792875007	53 235-111
G1/2	14	7318792875106	53 235-112
G1/2	15	7318792875205	53 235-113
G1/2	16	7318792875304	53 235-114
G3/4	15	7318792875403	53 235-117
G3/4	18	7318792875601	53 235-121
G3/4	22	7318792875700	53 235-123

Dämmung

Für Heizungs- und Kühlungssysteme. Polyurethan, FCKW-frei. Oberfläche mit grauer PVC Beschichtung. Weitere Einzelheiten entnehmen Sie bitte

dem Datenblatt "Isolierungen".

Für DN	L	Н	D	В	EAN	Artikel-Nr.
10-	155	135	90	103	7318792839108	52 189-615
20						
25	175	142	94	103	7318792839306	52 189-625
32	195	156	106	103	7318792839504	52 189-632
40	214	169	108	113	7318792839702	52 189-640
50	245	178	108	114	7318792839900	52 189-650

