

Climate Control

IMI Pneumatex

Simply Compresso

Sistema de manutenção de pressão com compressores

Para sistemas de aquecimento até 400 kW e de resfriamento até 600 kW

Simply Compresso

Simply Compresso é um sistema de pressurização com um compressor e um tanque de expansão integrado para sistemas de aquecimento, solar e água gelada. Especialmente adequado em situações em que é necessária compactação extrema, instalação de plug & play e controle de pressão total. Simply Compresso é a mais recente adição à série Compresso Connect destinada a instalações de válvulas de segurança de 4 bar até 400 kW em capacidade de aquecimento. O novo painel de controle do **BrainCube Connect** permite um novo nível de conectividade, permitindo a comunicação com o sistema BMS, outros BrainCubes bem como operação remota do sistema de pressurização através de visualização em tempo real.

Principais características

Design melhorado para operação mais fácil e confortável

Resistente display 3.5" iluminado, touch e colorido. Menu de operação fácil e intuitivo. Interface com controle remoto e status ao vivo. Painel de controle do BrainCube Connect integrado ao TecBox.

Conectividade de última geração Conexões padronizadas ao to BMS e dispositivos remotos disponíveis (RS485, Ethernet, USB) permitindo economia de tempo durante a instação e serviço e unidadde controlável. Start-up e inicialização Plug & Play Para deixar o Simply Compresso montado e funcionando, será preciso somente três passos simples.

Manutenção de pressão com o modo ECO-night

Mantendo o tempo de execução do compressor ao mínimo absoluto.

Descrição técnica - Unidade de controle TecBox

Aplicações:

Sistema de água de aquecimento, resfriamento e solar.

Para sistema de acordo com EN 12828, SWKI HE301-01, sistemas solares de acordo com EN 12976, ENV 12977 com proteção para excesso de temperatura no campo, em caso de falta de energia.

Pressão:

Pressão admissível mínima, PSmin: 0 bar Pressão admissível máxima, PS: 4 bar Pressão de operação, mínima,

dpu min: 0,5 bar

Pressão de operação, máxima,

dpu max: 3,5 bar

Temperatura:

Temperatura max. admissível, $t_{\rm Smax}$: 70°C Temperatura min. admissível, $t_{\rm Smin}$: 5°C

Temperatura:

Máx. temperatura ambiente admissível, t_{Amax} : 40°C

Min. temperatura ambiente admissível, t_{Amin}: 5°C

Precisão:

Precisão do controle da pressão ± 0,1 bar.

Tensão de alimentação:

1 x 230V (-6% + 10%), 50/60 Hz

Consumo elétrico:

Ver Artigos.

Classe de proteção:

IP 22 de acordo com EN 60529

Nível de pressão sonora:

59 dB(A) /1bar

Conexões Mecanicas:

Alimentação de água S: G1/2" Conexão do Sistema Swm: G3/4"

Materiais:

Principais: aço, latão e bronze

Transporte e armazenamento:

Em lugares secos e livres de gelo.

Padrão:

Construído de acordo com MD 2006/42/EC, Annex II 1.A EMC-D. 2014/30/EU

Tanque de expansão:

Tanque primário incluso na TecBox. Para mais informações, veja a descrição Técnica – Tanques de expansão.

Descrição técnica - Tanque de expansão

Aplicações:

O tanque primário é parte da unidade de controle TecBox. Tanque de extensão opcional somente com a unidade de controle TecBox.

Ver aplicações na descrição técnica - Unidade de controle.

Ambientes:

Fluido do sistema não agressivo e não tóxico. Anticongelante à base de etileno ou propilenoglicol, até 50%.

Pressão:

Pressão admissível mínima, PSmin: 0 bar Pressão admissível máxima, PS: 4 bar

Temperatura:

Máx. temperatura admissível na bolsa $t_{\tiny Bmax}$: 70°C Min. temperatura admissível na bolsa, $t_{\tiny Bmin}$: 5°C

De acordo com norma Europeia de equipamento pressurizados PED:

Máx. temperatura admissível, t_{Smax} : 120°C Min. temperatura admissível, t_{Smin} : -10°C

Materiais:

Aço. Cor berílio.

Bolsa de borracha butílica hermética de acordo com EN 13831.

Transporte e armazenamento:

Em lugares secos e livres de gelo.

Padrão:

Construído de acordo com PED 2014/68/EU.

Garantia:

Compresso CD, CD...E: 5 anos de garantia para o tanque.

Função, Equipamento, Características

Start-up e inicialização Plug & Play

Graças a um tanque primário integrado com uma précalibração do sensor de nivel, o simples procedimento de start-up é:

- Conecte a unidade à instalação
- Conecte a alimentação de energia
- Siga as instruções mostradas no BrainCube

Unidade de controle BrainCube Connect

- Controle do Connect BrainCube para uma operação de sistema inteligente, totalmente automática e segura. Auto otimização com função de memória..
- Tela de toque colorida resistiva de 3,5" TFT iluminada. Interface baseada na web com controle remoto e visualização ao vivo. Layout do menu fácil ao usuário, orientado para operação com slide e operação de toque, guia de procedimento de inicialização passo a passo e ajuda direta em janelas pop-up. Representação de todos os parâmetros relevantes e status da operação em texto sem formatação e/ou gráficos, multilingues.
- Registro de dados e análise de sistemas, memória de mensagem cronológica com definição de prioridades, controlável remotamente com visualização ao vivo, autoteste periódico automático.
- Tanque primário ja montado e integrado como parte da unidade de controle.

Reposição de água (Simply Compresso 4 C2.1-80 SWM)

- Fillsafe: monitoramento e controle de reposição de água com medidor de vazão de água de contato integrado e válvula solenóide.
- Conexão para dispositivos de reposição de água Pleno P BA4R opcionais para proteção de água da torneira seguindo EN 1717.
- Monitoramento e controle Softsafe para dispositivo de tratamento de água de recarga opcional.

Manutenção de pressão

- Modo ECO-night com temporizador programável para ajudar a manter o tempo de execução do compressor no mínimo absoluto, utilizando a histerese disponível entre a pressão inicial máxima e a pressão final do sistema durante a noite. Antes de atingir a "noite", a pressão do sistema será ajustada para o valor máximo.
- Compressor silencioso

Tanque de expansão

- Bolsa butil hermética.
- Inclusos tubos flexíveis para a conexão hidráulica e válvula de bloqueio e dreno com válvula esfera para drenagem rápida (CD...E).
- Dreno de condensação na parte inferior.
- Já montado como parte da TecBox (tanque primário CD).

Cálculo

Manutenção de pressão para sistemas TAZ ≤ 100° C

Cálculo seguindo EN 12828, SWKI HE301-01 *).

Para todas as aplicações especiais como sistemas solares, sistemas de aquecimento distritais, sistemas com temperaturas superiores a 100°C, sistemas de resfriamento com temperaturas abaixo de 5°C, por favor, use o catálogo do software HySelect ou entre em contato conosco.

Equações gerais

Vs	Capacidade volumétrica do sistema	Aquecimento	Vs = vs · Q	vs Q	Capacidade específica da água, tabela 4. Capacidade calorífica instalada.
			Vs= Conhecido		Volume de água do sistema conhecido
		Resfriamento	Vs= Conhecido		Volume de água do sistema conhecido
Ve	Volume de expansão	EN 12828	Ve = e · (Vs+Vhs)	e, ehs	Coeficiente de expansão para t _{máx} , tabela 1
		Resfriamento	Ve = e · (Vs+Vhs)	e, ehs	Coeficiente de expansão para t _{máx} , tabela 1 ⁷⁾
		SWKI HE301-01 Aquecimento	$Ve = e \cdot Vs \cdot X^{1)} + ehs \cdot Vhs$	e ehs	Coeficiente de expansão para ($ts_{m\acute{a}x}$ + tr)/2, tabela 1 Coeficiente de expansão para $t_{m\acute{a}x}$, tabela 1
		SWKI HE301-01 Resfriamento	$Ve = e \cdot Vs \cdot X^{1)} + ehs \cdot Vhs$	e, ehs	Coeficiente de expansão para t _{máx} , tabela 1 ⁷⁾
Vwr	Reserva de água	EN 12828, Resfriamento	Vwr ≥ 0,005 · Vs ≥ 3 L		
		SWKI HE301-01	Vwr é considerado no Ve com o coeficiente X		
p0	Pressão mínima 2)	EN 12828,	p0 = Hst/10 + 0,2 bar ≥ pz	Hst	Altura Estática
	Limite mínimo do valor para a manutenção de pressão	Resfriamento		pz	Pressão mínima exigida do equipamento para bombas ou caldeiras
		SWKI HE301-01	p0 = Hst/10 + 0,3 bar ≥ pz		
ра	Pressão inicial Mais baixa pressão para uma ótima manutenção de pressão		pa ≥ p0 + 0,3 bar		
pe	Pressao final Entrada superior para uma			psvs dpsvs _c	Sistema de valvula de seguranca de pressao de resposta Tolerancia de fechamento da valvula de seguranca
	otima manutencao de pres- sao	EN 12828	pe ≤ psvs - dpsv _c	dpsvs _c	0,5 bar para psvs ≤ 5 bar ⁴⁾ 0,1 · psvs para psvs > 5 bar ⁴⁾
		Resfriamento	pe ≤ psvs - dpsv _c	dpsvs _c	0,6 bar para psvs ≤ 3 bar ⁴⁾ 0,2 · psvs para psvs > 3 bar ⁴⁾
		SWKI HE301-01 Aquecimento	pe ≤ psvs/1,15 e pe ≤ psvs/0,3 bar		psvs ⁴⁾
		SWKI HE301-01 Resfriamento, solar, bomba de calor			psvs 4)
Comp	resso				
pe	Pressão final		pe=pa+0,2		
VN	Volume nominal do vaso de	EN 12828,	VN ≥ (Ve + Vwr + 2 ³⁾) · 1,1		
	expansão 5)	Resfriamento			

1) Aquecimento, Resfriamento, Solar: Q ≤ 10 kW: X = 3 | 10 kW < Q ≤ 150 kW: X = (87-0,3 · Q)/28 | Q > 150 kW: X = 1,5 Sistemas de sonda geotérmica: X = 2,5

Q = f(Hst)

SWKI HE301-01 | VN ≥ (Ve + 2³) · 1,1

A fórmula para a pressão mínima p0 é aplicável à instalação de manutenção da pressão no lado da sucção da bomba de circulação.
 No caso de uma instalação na descarga da bomba, o p0 é para ser aumentada pela altura manométrica da bomba Δp.

>> Seleção rápida do Compresso

- 3) Adicionar 2 litros quando um Vento está instalado no sistema.
- 4) As válvulas de segurança devem trabalhar dentro desses limites. Use apenas válvulas de segurança certificadas e testadas por omponentes do tipo H, DGH para sistemas de aquecimento e tipo F, DGF para sistemas de refrigeração. Para instalações de acordo com SWKI HE301-01, apenas devem ser utilizadas válvulas de segurança do tipo de homologação DGF e DGH.
- 5) Selecione um tanque que tenha um volume igual ou maior.
- 7) Máx. temperatura de paralisação do sistema, geralmente 40 ° C para aplicações de resfriamento e sondas geotérmicas com regeneração do solo, 20 ° C para outras sondas geotérmicas.
- *) SWKI HE301-01: Válido para a Suiça. Nosso programa de cálculo HySelect baseia-se em um avançado método de cálculo e base de dados. Portanto, os resultados podem ser diferentes.

TecBox

Tabela 1: coeficiente de expansão e

t (TAZ, ts _{ma}	_x , tr, ts _{min}), °C	20	30	40	50	60	70	80	90	100	105	110
e Água	= 0 °C	0,0016	0,0041	0,0077	0,0119	0,0169	0,0226	0,0288	0,0357	0,0433	0,0472	0,0513
e % Peso M	/IEG*											
30 %	= -14,5 °C	0,0093	0,0129	0,0169	0,0224	0,0286	0,0352	0,0422	0,0497	0,0577	0,0620	0,0663
40 %	= -23,9 °C	0,0144	0,0189	0,0240	0,0300	0,0363	0,0432	0,0505	0,0582	0,0663	0,0706	0,0750
50 %	= -35,6 °C	0,0198	0,0251	0,0307	0,0370	0,0437	0,0507	0,0581	0,0660	0,0742	0,0786	0,0830
e %Peso N	IEG**											
30 %	= -12,9 °C	0,0151	0,0207	0,0267	0,0333	0,0401	0,0476	0,0554	0,0639	0,0727	0,0774	0,0823
40 %	= -20,9 °C	0,0211	0,0272	0,0338	0,0408	0,0481	0,0561	0,0644	0,0731	0,0826	0,0873	0,0924
50 %	= -33,2 °C	0,0288	0,0355	0,0425	0,0500	0,0577	0,0660	0,0747	0,0839	0,0935	0,0985	0,1036

Tabela 4: vs aprox. capacidade de água *** de centrais de aquecimentos referentes à capacidade de calor instalada Q

t _{Smax} tr	°C	90 70	80 60	70 55	70 50	60 40	50 40	40 30	35 28
Radiadores	vs litro/kW	14,0	16,5	20,1	20,6	27,9	36,6	-	-
Radiadores planos	vs litro/kW	9,0	10,1	12,1	11,9	15,1	20,1	-	-
Convectores	vs litro/kW	6,5	7,0	8,4	7,9	9,6	13,4	-	-
Tratadores de ar	vs litro/kW	5,8	6,1	7,2	6,6	7,6	10,8	-	-
Piso aquecido	vs litro/kW	10,3	11,4	13,3	13,1	15,8	20,3	29,1	37,8

^{*)} MEG = Monoetileno Glicol

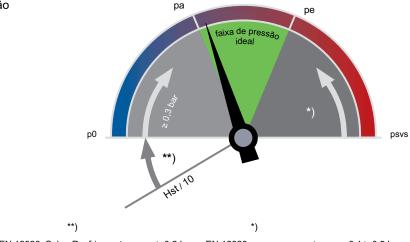
Tabela 5: Valores padrão DN e para tubos de expansão com Simply Compresso

Comprimento até aproximadamente 30 m	DNe	20	25
Aquecimento :			
EN 12828	Q kW	1000	1700
Resfriamento :		<u>'</u>	
ts _{max} ≤ 50 °C	Q kW	1600	2700

Temperaturas

t _{smax}	Temperatura máxima do sistema
U III C	Temperatura máxima para o cálculo do volume de expansão. Para sistemas de aquecimento, o dimensionamento da temperatura
	de fluxo em que um sistema de aquecimento será operado com a mais baixa temperatura exterior a ser assumida (temperatura
	exterior de acordo com a norma EN 12828). Para sistemas de resfriamento, onde o máximo de temperatura é conseguido devido
	ao modo de funcionamento ou paragem e para sistemas de energia solar, onde a temperatura de evaporação deve ser evitada.
t _{smin}	Temperatura mais baixa do sistema
	Temperatura mais baixa para o cálculo de volume de expansão. A temperatura mais baixa do sistema é igual ao ponto de conge-
	lamento. É dependente da porcentagem de aditivos anti-congelantes. Para a água sem aditivos t _{min} = 0.
tr	Temperatura de Retorno
	Temperatura de retorno do sistema de aquecimento com a temperatura exterior mais baixa a ser assumida (temperatura exterior
	de acordo com a norma EN 12828).
TAZ	Temperatura de segurança limitadora controlador de temperatura de segurança Limite de temperatura
	Dispositivo de segurança de acordo com a norma EN 12828 para a proteção da temperatura dos geradores de calor. Se a temperatura
	limite for excedida, o conjunto de aquecimento é desligado. Se os limitadores estão bloqueados, os controladores automaticamente
	liberam o fornecimento de calor se a temperatura estiver abaixo. Valor de ajuste para os sistemas de acordo com a EN 12828 ≤ 110 ° C.

^{**)} MPG = Monopropileno Glicol


^{***)} Capacidade de água = gerador de calor + rede de distribuição + emissores de calor

Manutenção da pressão de precisão

Ar controlado com Compresso minimizam a variação de pressão entre pa e pe.

± 0,1 bar

EN 12828, Solar, Resfriamento:

≥ 0,2 bar EN 12828:

≥ psvs · 0,1 ≥ 0,5 bar

Solar, Resfriamento: $\geq psvs \cdot 0,2 \geq 0,6 \text{ bar}$

p0 Pressão mínima

Compresso

p0 e os pontos de ligação são calculados pelo BrainCube.

pa Pressão inicial

Compresso

Se a pressão do sistema é < pa, então o compressor parte.

pe Pressão final

Compresso

pe é ultrapassado pelo aquecimento, então a válvula solenoide de ar «abre». pe = pa + 0,2

Seleção rápida

Sistemas de aquecimento TAZ ≤ 100 °C, sem adição de anticongelante

	Alt F -4/4!	TecBox e tanque de extensão									
Q [kW]	Altura Estática	Radia	dores	Radiador	es planos	Aquecimento de piso					
	Hst [m]	70 50	50 40	70 50	50 40	35 28					
EN12828											
< 100	28	C 2.1-80	C 2.1-80	C 2.1-80	C 2.1-80	C 2.1-80					
150	28	C 2.1-80 + CD 80E	C 2.1-80 + CD 80E	C 2.1-80	C 2.1-80 + CD 80E	C 2.1-80 + CD 80E					
200	28	C 2.1-80 + CD 80E	C 2.1-80 + CD 80E	C 2.1-80	C 2.1-80 + CD 80E	C 2.1-80 + CD 80E					
250	26	C 2.1-80 + CD 80E	-	C 2.1-80 + CD 80E	C 2.1-80 + CD 80E	C 2.1-80 + CD 80E					
300	23	-	-	C 2.1-80 + CD 80E	-	-					
350	20	-	-	C 2.1-80 + CD 80E	-	-					
400	17	-	-	C 2.1-80 + CD 80E	-	-					

Exemplo

Q = 200 kW Radiadores planos 50 | 40 °C Hst = 25 m psvs = 4,0 bar

Selecionado: TecBox C 2.1-80 S

Tanque de extensão: CD 80E

Checagem das válvulas de segurança psvs e altura estática Hst: para TAZ = 100 °C

EN 12828:

- Hst: 25 < 27

=> o.k.

- psvs: $25/10 + 0.7 + 0.5 = 3.7 \le 4.0$

=> o.k

Equipamento

Tubos de Expansão

De acordo com a tabela 5.

Válvula de Bloqueio DLV

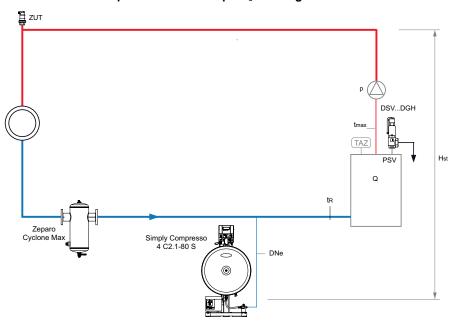
Incluído no volume de fornecimento.

Zeparo

Purgador ZUT ou ZUP em cada ponto alto para purga durante o enchimento e durante o processo de drenagem. Separador de sujeira e magnetita em cada sistema, em cada retorno para o gerador de calor. Se não há um degasificador central instalado (por exemplo Vento V Connect), um separador de micro-bolhas pode ser instalado no fluxo principal se possível antes da bomba de circulação.

A altura estática Hst_m de acordo com a tabela acima do separador de microbolhas não deve ser excedida.

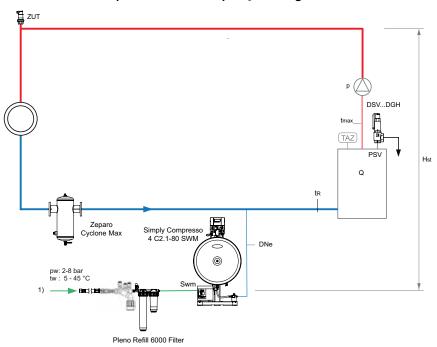
ts _{max} °C	90	80	70	60	50	40	30	20	10
Hst _m mWs	15,0	13,4	11,7	10,0	8,4	6,7	5,0	3,3	1,7



Exemplo de aplicação

Simply Compresso 4 C2.1-80 S

TecBox com 1 compresso e tanque primário, manutenção da pressão de precisão de ± 0,1 bar.

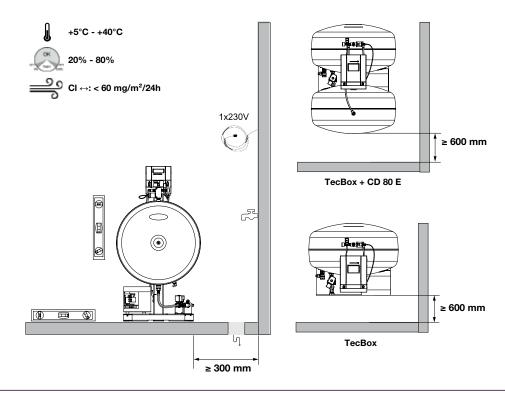

Para sistemas de aquecimento sem reposição de água

Simply Compresso 4 C2.1-80 SWM

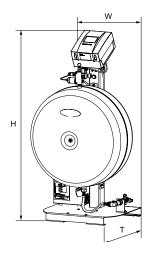
TecBox com 1 compressor e tanque primário, manutenção da pressão de precisão de ± 0,1 bar com o repositor de água Pleno P BA4R e Pleno Refill para o tratamento de água.

Para sistemas de aquecimento com reposição de água

1) Conexão de reposição de água, pw ≥ p0 + 1,7 bar, (max. 8 bar)

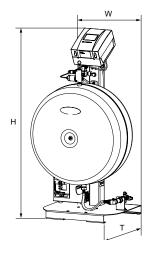

Zeparo Cyclone Max separador de sujeira ciclônico com haste magnética ZCXM no retorno.

Zeparo ZUT para purga automática durante enchimento e durante a drenagem.


Outros acessórios, produtos e detalhes de seleção: Catálogo técnico Pleno, Zeparo e Acessórios

Instalação

Unidade de controle TecBox, Simply Compresso 4 C2.1-80



Simply Compresso 4 C2.1-80 S

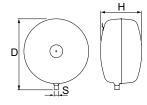
Precisão do controle da pressão \pm 0.1 bar, funcionalidade ECO-night.

1 compressor, 1 válvula de alívio, 1 tanque primário.

Tipo	PS [bar]	max. dpu [bar]	VN [I]	W	н	Т	m [kg]	Pel [kW]	Código Item
C 2.1-80 S	4	3,5	80	603	1107	481	39	0,3	301021-41011

Simply Compresso 4 C2.1-80 SWM

Precisão do controle da pressão \pm 0.1 bar, funcionalidade ECO-night.

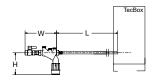

1 compressor, 1 válvula de vazamento, 1 tanque primário.

1 medidor de água e 1 válvula solenóide para reposição de água.

Tipo	PS [bar]	max. dpu [bar]	VN [I]	W	Н	Т	m [kg]	Pel [kW]	Código Item
C 2.1-80-SWM	4	3,5	80	603	1107	481	41	0,3	301021-41012

Tanque de extensão

Compresso CD...E


Tanque secundário. Inclusos tubos flexíveis para a conexão hidráulica com Simply Compresso TecBox e kit de montagem para a conexão de ar com o Simply Compresso TecBox.

Tipo	VN [I]	D	Н	m [kg]	S	Código Item
4 bar (PS)						
CD 80.4 E	80	636	346 **)	16	R3/4	301021-41003

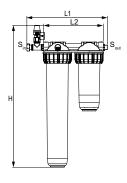
VN = Volume Nominal

**) Tolerância 0 /+35.

Módulo de proteção da água de reposição

Pleno P BA4 R

Unidade hidráulica para operação de reposição de água com o Vento / Transfero Connect, Pleno PX / PIX, Simply Compresso C 2.1-80 SWM em combinação com módulos Pleno Refill. Apresenta uma válvula gaveta, válvula de retenção, filtro e um anti-refluxo tipo BA (classe de proteção 4) de acordo com EN 1717.

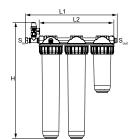

Conexão (Swm): G1/2

Tipo	PS [bar]	W	L	Н	m [kg]	qwm [l/h]	Código Item
BA4 R	10	210	1300	135	1,1	350* 250** 50*** q(pw-pout)	813 3310

qwm = fluxo de água de reposição

- * valor médio máximo para desgaseificação de água de reposição com Vento V / VI e Transfero TV / TVI
- ** valor médio máximo para desgaseificação de água de reposição com Vento Compact
- *** ao usar limitador de fluxo para operação com cartuchos de tratamento de água de baixo fluxo

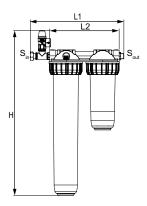
Pleno Refill 6000, 12000 / Pleno Refill Demin 2000, 4000


Pleno Refill

Unidade hidráulica para desmineralização de água juntamente com Vento/Transfero Connect Tec Boxes. Filtro com tamanho de malha de 25 µm para proteger o sistema hidrônico. Garrafa de desmineralização preenchida com resina de alta qualidade

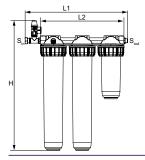
Projetado para montagem plug&play em conjunto com Transfero/Vento Connect.

Unidades para todas as aplicações, incluindo Transfero Connect e Vento Connect com o uso de um regulador de fluxo que está incluído em cada Transfero / Vento Connect.


Unidade para água abrandada com suporte para montagem de parede e 25 µm filtro Porca de 3/4", rosca externa de 3/4" apropriada para gaxeta plana, com limitador de vazão.

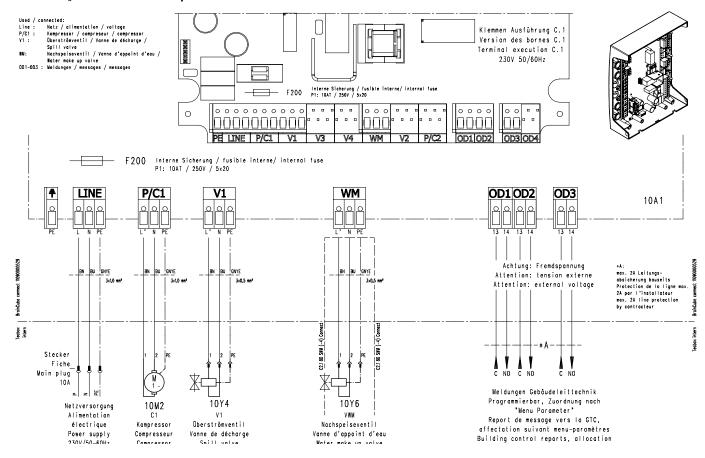
Tipo	Capacidade I x °dH	S _{in}	S _{out}	Н	L1	L2	m [kg]	Código Item
Refill 6000 filter	6000	G3/4	G3/4	644	366	271	4,6	813 3010
Refill 12000 filter	12000	G3/4	G3/4	644	513	420	8,3	813 3011

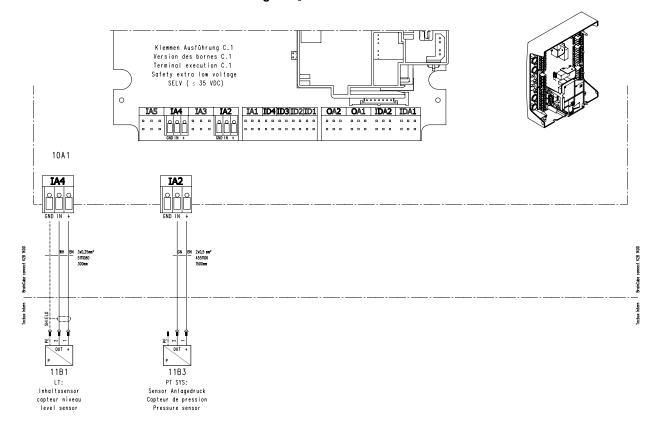
^{****} para combinação com Pleno PX / PIX, consulte o diagrama q (pw-pout) na folha de dados do Pleno Connect



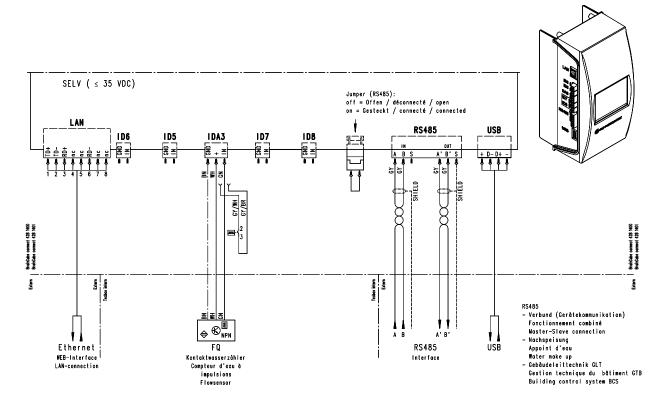
Unidade para água desmineralizada com suporte para montagem de parede e 25 µm filtro Porca de 3/4", rosca externa de 3/4" apropriada para gaxeta plana, com limitador de vazão.

Tipo	Capacidade I x °dH	S _{in}	S _{out}	Н	L1	L2	m [kg]	Código Item
Refill Demin 2000 filter	2000	G3/4	G3/4	644	366	271	4,6	813 3015
Refill Demin 4000 filter	4000	G3/4	G3/4	644	513	420	8,3	813 3016


→ = Sentido do fluxo


Esquema elétrico

230 V / 50/60 Hz


Alimentação elétrica do Compresso C.1

Conexões de extra baixas de tensão de segurança

Comunicação

Os produtos, textos, fotografias, gráficos e diagramas contidos nesta publicação poderão ser alterados pela IMI sem aviso prévio ou justificativa. Para obter informações mais atualizadas sobre nossos produtos e suas especificações, visite climatecontrol.imiplc.com ou contate a IMI.